Что такое разрешающая способность микроскопа. Лучше один раз увидеть, или микроскопия сверхвысокого разрешения. Все об увеличении микроскопа

16.03.2024

2. Оптическая система микроскопа.

3. Увеличение микроскопа.

4. Предел разрешения. Разрешающая способность микроскопа.

5. Полезное увеличение микроскопа.

6. Специальные приемы микроскопии.

7. Основные понятия и формулы.

8. Задачи.

Способность глаза различать мелкие детали предмета зависит от размеров изображения на сетчатке или от угла зрения. Для увеличения угла зрения используют специальные оптические приборы.

25.1. Лупа

Простейшим оптическим прибором для увеличения угла зрения является лупа, представляющая собой короткофокусную собирающую линзу (f = 1-10 см).

Рассматриваемый предмет помещают между лупой и ее передним фокусом с таким расчетом, чтобы его мнимое изображение находилось в пределах аккомодации для данного глаза. Обычно используют плоскости дальней или ближней аккомодации. Последний случай предпочтительнее, так как глаз не утомляется (кольцевая мышца не напряжена).

Сравним углы зрения, под которыми виден предмет, рассматриваемый «невооруженным» нормальным глазом и с помощью лупы. Расчеты выполним для случая, когда мнимое изображение предмета получается на бесконечности (дальний предел аккомодации).

При рассматривании предмета невооруженным глазом (рис. 25.1, а) для получения максимального угла зрения предмет нужно поместить на расстояние наилучшего зрения а 0 . Угол зрения, под которым при этом виден предмет, равен β = В/а 0 (В - размер предмета).

При рассматривании предмета с помощью лупы (рис. 25.1, б) его помещают в передней фокальной плоскости лупы. При этом глаз видит мнимое изображение предмета В", расположенное в бесконечно удаленной плоскости. Угол зрения, под которым видно изображение, равен β" ≈ В/f.

Рис. 25.1. Углы зрения: а - невооруженным глазом; б - с помощью лупы: f - фокусное расстояние лупы; N - узловая точка глаза

Увеличение лупы - отношение угла зрения β", под которым видно изображение предмета в лупе, к углу зрения β, под которым предмет виден «невооруженным» нормальным глазом с расстояния наилучшего зрения:

Увеличения лупы для близорукого и дальнозоркого глаза разные, так как у них различны расстояния наилучшего зрения.

Приведем без вывода формулу для увеличения, которое дает лупа, используемая близоруким или дальнозорким глазом при формировании изображения в плоскости дальней аккомодации:

где а даль - дальний предел аккомодации.

Формула (25.1) позволяет предположить, что, уменьшая фокусное расстояние лупы, можно добиться сколь угодно большого увеличения. В принципе это так. Однако при уменьшении фокусного расстояния лупы и сохранении ее размеров возникают такие аберрации, которые сводят на нет весь эффект увеличения. Поэтому однолинзовые лупы обычно имеют 5-7-кратное увеличение.

Для уменьшения аберраций изготавливают сложные лупы, состоящие из двух-трех линз. В этом случае удается добиться 50-кратного увеличения.

25.2. Оптическая система микроскопа

Большее увеличение можно осуществить, рассматривая при помощи лупы действительное изображение предмета, создаваемое другой линзой или системой линз. Такое оптическое устройство реализовано в микроскопе. Лупу в этом случае называют окуляром, а другую линзу - объективом. Ход лучей в микроскопе показан на рис. 25.2.

Предмет В помещается вблизи переднего фокуса объектива (F об) с таким расчетом, чтобы его действительное, увеличенное изображение B" находилось между окуляром и его передним фокусом. При

Рис. 25.2. Ход лучей в микроскопе.

этом окуляр дает мнимое увеличенное изображение B", которое и рассматривает глаз.

Изменяя расстояние между предметом и объективом, добиваются того, чтобы изображение В" оказалось в плоскости дальней аккомодации глаза (в этом случае глаз не утомляется). Для человека с нормальным зрением В" располагается в фокальной плоскости окуляра, а В" получается на бесконечности.

25.3. Увеличение микроскопа

Основной характеристикой микроскопа является его угловое увеличение. Это понятие аналогично угловому увеличению лупы.

Увеличение микроскопа - отношение угла зрения β", под которым видно изображение предмета в окуляре, к углу зрения β, под которым предмет виден «невооруженным» глазом с расстояния наилучшего зрения (а 0):

25.4. Предел разрешения. Разрешающая способность микроскопа

Может сложиться впечатление, что, увеличивая оптическую длину тубуса, можно добиться сколь угодно большого увеличения и, следовательно, рассмотреть самые мелкие детали предмета.

Однако учет волновых свойств света показывает, что на размеры мелких деталей, различимых с помощью микроскопа, накладываются ограничения, связанные с дифракцией света, проходящего через отверстие объектива. Вследствие дифракции изображением освещенной точки оказывается не точка, а небольшой светлый кружок. Если рассматриваемые детали (точки) предмета расположены достаточно далеко, то объектив даст их изображения в виде двух отдельных кружков и их можно различить (рис. 25.3, а). Наименьшему расстоянию между различимыми точками соответствует «касание» кружков (рис. 25.3, б). Если точки расположены очень близко, то соответствующие им «кружки» перекрываются и воспринимаются как один объект (рис. 25.3, в).

Рис. 25.3. Разрешающая способность

Основной характеристикой, показывающей возможности микроскопа в этом отношении, является предел разрешения.

Предел разрешения микроскопа (Z) - наименьшее расстояние между двумя точками предмета, при котором они различимы как отдельные объекты (т.е. воспринимаются в микроскопе как две точки).

Величина, обратная пределу разрешения, называется разрешающей способностью. Чем меньше предел разрешения, тем больше разрешающая способность.

Теоретический предел разрешения микроскопа зависит от длины волны света, используемого для освещения, и от угловой апертуры объектива.

Угловая апертура (u) - угол между крайними лучами светового пучка, входящего в линзу объектива от предмета.

Укажем без вывода формулу для предела разрешения микроскопа в воздушной среде:

где λ - длина волны света, которым освещается объект.

У современных микроскопов угловая апертура достигает 140°. Если принять λ = 0,555 мкм, то получим для предела разрешения значение Z = 0,3 мкм.

25.5. Полезное увеличение микроскопа

Выясним, насколько большим должно быть увеличение микроскопа при заданном пределе разрешения его объектива. Примем во внимание, что у глаза имеется собственный предел разрешения, обусловленный строением сетчатки. В лекции 24 мы получили следующую оценку для предела разрешения глаза: Z ГЛ = 145-290 мкм. Для того чтобы глаз мог различить те же точки, которые разделяет микроскоп, необходимо увеличение

Это увеличение называют полезным увеличением.

Отметим, что при использовании микроскопа для фотографирования объекта в формуле (25.4) вместо Z ГЛ следует использовать предел разрешения пленки Z ПЛ.

Полезное увеличение микроскопа - увеличение, при котором предмет, имеющий размер, равный пределу разрешения микроскопа, имеет изображение, размер которого равен пределу разрешения глаза.

Используя полученную выше оценку для предела разрешения микроскопа Z м ≈0,3 мкм), найдем: Г п ~500-1000.

Добиваться большего значения для увеличения микроскопа не имеет смысла, так как никаких дополнительных деталей увидеть все равно не удастся.

Полезное увеличение микроскопа - это разумное сочетание разрешающих способностей и микроскопа, и глаза.

25.6. Специальные приемы микроскопии

Специальные приемы микроскопии используются для увеличения разрешающей способности (уменьшения предела разрешения) микроскопа.

1. Иммерсия. В некоторых микроскопах для уменьшения предела разрешения пространство между объективом и предметом заполняют специальной жидкостью - иммерсией. Такой микроскоп называют иммерсионным. Эффект иммерсии заключается в уменьшении длины волны: λ = λ 0 /n, где λ 0 - длина световой волны в вакууме, а n - показатель преломления иммерсии. В этом случае предел разрешения микроскопа определяется следующей формулой (обобщение формулы (25.3)):

Отметим, что для иммерсионных микроскопов создают специальные объективы, так как в жидкой среде изменяется фокусное расстояние объектива.

2. УФ-микроскопия. Для уменьшения предела разрешения используют коротковолновое ультрафиолетовое излучение, невидимое глазом. В ультрафиолетовых микроскопах микрообъект исследуется в УФлучах (в этом случае линзы выполняются из кварцевого стекла, а регистрация ведется на фотопленке или на специальном люминесцентном экране).

3. Измерение размеров микроскопических объектов. С помощью микроскопа можно определить размеры наблюдаемого объекта. Для этого применяют окулярный микрометр. Простейший окулярный микрометр представляет собой круглую стеклянную пластинку, на которой нанесена шкала с делениями. Микрометр устанавливают в плоскости изображения, получаемого от объектива. При рассматривании в окуляр изображения объекта и шкалы сливаются, можно отсчитать, какое расстояние по шкале соответствует измеряемой величине. Предварительно определяют по известному объекту цену деления окулярного микрометра.

4. Микропроекция и микрофотография. С помощью микроскопа можно не только наблюдать объект через окуляр, но и фотографировать его или проецировать на экран. В этом случае применяют специальные окуляры, которые и проецируют промежуточное изображение A"B" на пленку или на экран.

5. Ультрамикроскопия. Микроскоп позволяет обнаружить частицы, размеры которых лежат за пределами его разрешения. Этот метод использует косое освещение, благодаря чему микрочастицы видны как светлые точки на темном фоне, при этом строение частиц увидеть нельзя, можно только установить факт их наличия.

Теория показывает, что, как бы силен не был микроскоп, всякий предмет размерами меньше 3 мкм будет представляться в нем просто как одна точка, без всяких подробностей. Но это не означает, что такие частицы нельзя видеть, следить за их движениями или считать их.

Для наблюдения частиц, размеры которых меньше предела разрешения микроскопа, служит приспособление, называемое ультрамикроскоп. Главную часть ультрамикроскопа составляет сильное осветительное приспособление; освещенные таким образом частицы наблюдаются в обыкновенном микроскопе. Ультрамикроскопия основана на том, что мелкие частицы, взвешенные в жидкости или газе, делаются видимыми при сильном боковом освещении (вспомним пылинки, видимые в солнечном луче).

25.8. Основные понятия и формулы

Окончание таблицы

25.8. Задачи

1. Линза с фокусным расстоянием 0,8 см используется в качестве объектива микроскопа с фокусным расстоянием окуляра, равным 2 см. Оптическая длина тубуса равна 18 см. Каково увеличение микроскопа?

2. Определить предел разрешения сухого и иммерсионного (n = 1,55) объективов c угловой апертурой u = 140 о. Длину волны принять равной 0,555 мкм.

3. Чему равен предел разрешения на длине волны λ = 0,555 мкм, если числовая апертура равна: А 1 = 0,25, А 2 = 0,65?

4. С каким показателем преломления следует взять иммерсионную жидкость, чтобы рассмотреть в микроскопе субклеточный элемент диаметром 0,25 мкм при наблюдении через оранжевый светофильтр (длина волны 600 нм)? Апертурный угол микроскопа 70°.

5. На ободке лупы имеется надпись «х10» Определить фокусное расстояние этой лупы.

6. Фокусное расстояние объектива микроскопа f 1 = 0,3 см, длина тубуса Δ = 15 см, увеличение Г = 2500. Найти фокусное расстояние F 2 окуляра. Расстояние наилучшего зрения a 0 = 25 см.

Методические указания

Для изучения объектов имеющих малые размеры и неразличимых невооруженным глазом, используют специальные оптические приборы – микроскопы. В зависимости от назначения различают: упрощенные, рабочие, исследовательские и универсальные. По используемому источнику освещения микроскопы подразделяются на: световые, люминесцентные, ультрафиолетовые, электронные, нейтронные, сканирующие, тоннельные. Конструкция любого из перечисленных микроскопов включает механическую и оптическую части. Механическая часть служит для создания условий наблюдения – размещения объекта, фокусировки изображения, оптическая – получения увеличенного изображения.

Устройство светового микроскопа

Микроскоп называется световым, так как он обеспечивает возможность изучать объект в проходящем свете в светлом поле зрения. На (рис.Внешний вид Биомед 2) представлен общий вид микроскопа Биомед-2.

  1. Штатив;
  2. Ограничительный винт;
  3. Винт крепления препарато-держателя;
  4. Держатель препарата;
  5. Ручка грубой настройки;
  6. Ручка точной настройки;
  7. Ручка регулировки высоты конденсора;
  8. Винты центровки конденсора;
  9. конденсор;
  10. Окуляр;
  11. Монокулярная головка;
  12. Револьвер на 4 позиций;
  13. Объективы;
  14. Предметный столик;
  15. Осветитель;
  16. Основание;
  1. Окуляр;
  2. Монокулярная головка;
  3. Револьвер на 4 позиций;
  4. Объективы;
  5. Предметный столик;
  6. Кольцо регулировки ирисовой диафрагмы;
  7. Конденсор;
  8. Осветитель;
  9. Основание;
  10. Штатив;
  11. Измерительный нониус;
  12. Ограничительный винт;
  13. Держатель препарата;
  14. Ручка грубой настройки;
  15. Ручка точной настройки;
  16. Ручка перемещения столика по X(слева на право);
  17. Ручка перемещения столика по Y(от себя к себе);
  18. Выключатель;
  19. Ручка регулировки яркости

Механическая часть микроскопа состоит из основания микроскопа, подвижного предметного столика и револьверного устройства.

Фокусировка на объект осуществляется перемещением предметного столика путем вращения ручек грубой и тонкой настройки.

Диапазон грубой фокусировки микроскопа – 40 мм.

Конденсор крепится на кронштейне и располагается между предметным столиком и коллекторной линзой. Его движение производиться вращением ручкой регулировки высоты конденсора. Общий вид его показан на (рис.???) Двухлинзовый конденсор с апертурой 1,25 обеспечивает освещение полей на объекте при работе с объективами увеличением от 4 до 100 крат.

Предметный столик укреплен на кронштейне. Координатное перемещение предметного столика, возможно, при вращении рукояток. Крепление объекта на столике осуществляется держателями препарата. Держатели можно перемещать относительно друг друга.

Координаты объекта и величина перемещения отсчитывается по шкалам с ценой деления 1 мм и нониусам с ценой деления 0,1 мм. Диапазон перемещения объекта в продольном направлении 60 мм, в поперечном направлении – 40 мм. Конденсор

Конденсор

Микроскоп оборудован узлом крепления конденсора с возможностью центрировочного и фокусировочного перемещения.

В качестве базового в микроскопе используется универсальный конденсор, установленный в держатель; при использовании иммерсионного масла - числовая апертура составляет 1,25.

При настройке освещения плавное изменение числовой апертуры пучка лучей освещающих препарат, осуществляется с помощью апертурной диафрагмы.

Конденсор устанавливается в держатель конденсора в фиксированное положение и закрепляется стопорным винтом.

Винты для центрировки конденсора используются в процессе настройки освещения для перемещения конденсора в плоскости, перпендикулярной к оптической оси микроскопа, при центрировке изображения полевой диафрагмы относительно краев поля зрения.

Рукоятка перемещения конденсора вверх-вниз, расположена на левой стороне кронштейна держателя конденсора, используются при настройке освещения для фокусирования на изображение полевой диафрагмы.

Светофильтры устанавливаются в поворотное кольцо, расположенное в нижней части конденсора.

Оптическая часть микроскопа

Состоит из осветительной и наблюдательной систем. Осветительная система равномерно освещает поля зрения. Наблюдательная система предназначена для увеличения изображения наблюдаемого объекта.

Осветительная система

Находится под предметным столиком. Она состоит из коллекторной линзы установленной в корпусе, которая ввинчивается в отверстие основания микроскопа и патрона с установленной в него лампой. Патрон с лампой установлен внутри основания микроскопа. Питание осветителя микроскопа обеспечивается от сети переменного тока через трех-контактый провод питания, подключаемый с помощью штекера к сети питания. Включение лампы осветителя осуществляется выключателем, расположенным на основании микроскопа.

Наблюдательная система

Состоит из объективов, монокулярной насадки и окуляров.

Объективы

Объективы составляют самую важную, наиболее ценную и хрупкую часть микроскопа. От них зависит увеличение, разрешающая способность и качество изображения. Они представляют собой систему взаимно центрированных линз, заключенных в металлическую оправу. На верхнем конце оправы имеется резьба, при помощи которой объектив крепится в гнезде револьвера. Передняя (ближайшая к объекту) линза в объективе называется фронтальной, единственная в объективе, производящая увеличение. Все остальные линзы объектива называются коррекционными и служат для устранения недостатков оптического изображения.

При прохождении через линзы пучка световых лучей с разной длиной волны возникает радужное окрашивание изображения – хроматическая аберрация. Неодинаковое преломление лучей на кривой поверхности линзы приводит к сферической аберрации, возникающей вследствие неравномерного преломления центральных и периферических лучей. В результате точечное изображение получается в виде размытого кружка.

Объективы, входящие в комплект микроскопа, рассчитаны на оптическую длину тубуса 160мм, высоту 45 мм и толщину покровного стекла препарата мм.

Объективы увеличением более 10X снабжены пружинящими оправами, предохраняющими от повреждения препарат и фронтальные линзы объективов при фокусировании на поверхность препарата.

На корпусе объектива в соответствии с увеличением может быть нанесено цветное кольцо, а также:

  • числовая апертура;
  • оптическая длина тубуса 160;
  • толщина покровного стекла 0,17, 0 или -";
  • вид иммерсии - масляная OIL (М.И.) или водная В.И.;

Объективы с маркировкой 0,17 рассчитаны для исследования препаратов только с покровными стеклами толщиной 0,17 мм. Объективы с маркировкой 0 рассчитаны для исследования препаратов только без покровных стекол. Объективы слабого увеличения (2,5 - 10), а также иммерсионные объективы могут быть использованы при исследовании препаратов как с покровным стеклом, так и без покровного стекла. Эти объективы маркируются значком -.

Окуляры

Окуляр микроскопа состоит из двух линз: глазной (верхней) и собирательной (нижней). Между линзами находится диафрагма. Боковые лучи диафрагма задерживает, близкие к оптической оси пропускает, что усиливает контрастность изображения. Назначение окуляра состоит в увеличении изображения, которое дает объектив. Окуляры имеют собственное увеличение ×5, ×10, ×12.5, ×16 и ×20, что указано на оправе.

Выбор окуляров зависит от комплекта применяемых объективов. При работе с объективами ахроматами, ахростигматами и ахрофлюарами целесообразно использовать окуляры с линейным полем зрения не более 20 мм, с объективами планахроматами и планапохроматами - окуляры с линейным полем зрения 20; 22 и 26,5 мм.

Дополнительно микроскоп может комплектоваться окуляром WF10/22 со шкалой; цена деления шкалы 0,1 мм.

Характеристики микроскопов

Увеличение микроскопа

К основным характеристикам микроскопа относятся увеличение и разрешающая способность. Общее увеличение, которое дает микроскоп, определяется как произведение увеличения объектива на увеличение окуляра. Однако увеличение не характеризует качества изображения, оно может быть четким и нечетким. Четкость получаемого изображения характеризуется разрешающей способностью микроскопа, т.е. той наименьшей величиной объектов или их деталей, которые можно увидеть с помощью этого прибора.

Общее увеличение Г микроскопа при визуальном наблюдении определяется по формуле: Г = βок × βок, где:

βоб - увеличение объектива (маркируется на объективе); βок - увеличение окуляра (маркируется на окуляре).

Диаметр поля, наблюдаемого в объекте, Доб мм, определяется по формуле: Доб= Док × βоб. Док –диаметр окулярного поля зрения(маркируется на окуляре)мм. Расчетные значения увеличения микроскопа и диаметра наблюдаемого поля на объекте приведены в таблице 3.

Таблица 3
Увеличение объектива Увеличение микроскопа и наблюдаемое поле

на объекте с окуляром:

5/26* 10/22 15/16*
Г Доб, мм Г Доб, мм Г Доб, мм
4 20 4,0 50 4,5 64 3,75
10 50 2,0 100 1,8 160 1,5
20 100 1,0 200 0,9 320 0,75
40 200 0,5 420 0,45 640 0,38
100 500 0,2 1000 0,18 1600 0,15
  • По дополнительному заказу

Разрешающая способность микроскопа

Разрешающая способность микроскопа определяется минимальным (разрешающим) расстоянием между двумя точками (или двумя тончайшими штрихами), видимыми раздельно, и вычисляется по формуле

D=λ/(A1+A2) , где d – минимальное (разрешающее) расстояние между двумя точками (штрихами); λ – длина волны ис- пользуемого света; A1 и А2 – числовая апертура объектива (обозначена на его оправе) и конденсора.

Увеличить разрешающую способность (т.е. уменьшить абсолютную величину d, так как это обратные величины) можно следующими путями: освещать объект светом с более короткой длиной волны λ (например, ультрафиолетовыми или коротковолновыми лучами), использовать объективы с большей апертурой А1 или повышать апертуру конденсора А2.

Рабочее расстояние объектива

Микроскопы снабжают четырьмя съемными объективами с собственными увеличениями 4×, 10×, 40× и 100×, обозначенными на металлической оправе. Увеличение объектива зависит от кривизны основной фронтальной линзы: чем больше кривизна, тем короче фокусное расстояние и тем больше увеличение. Это необходимо помнить при микроскопировании – чем большее увеличение дает объектив, тем меньше свободное рабочее расстояние и тем ниже следует опускать его над плоскостью препарата.

Иммерсия

Все объективы разделяются на сухие и иммерсионные, или погружные. Сухим называется такой объектив, между фронтальной линзой которого и рассматриваемым препаратом находится воздух. При этом ввиду разницы показателя преломления стекла (1,52) и воздуха (1,0) часть световых лучей отклоняется и не попадает в глаз наблюдателя. Объективы сухой системы имеют обычно большое фокусное расстояние и дают малое (10×) или среднее (40×) увеличение.

Иммерсионными, или погружными, называют такие объективы, между фронтальной линзой которых и препаратом помещается жидкая среда с показателем преломления, близким к показателю преломления стекла. В качестве иммерсионной среды используют обычно кедровое масло. Можно использовать также воду, глицерин, прозрачные масла, монобромнафталин и др. При этом между фронтальной линзой объектива и препаратом устанавливается однородная (гомогенная) среда (стекло препарата – масло – стекло объ- ектива) с одинаковым показателем преломления. Благодаря этому все лучи, не преломляясь и не изменяя направления, попадают в объектив, создавая условия наилучшего освещения препарата. Величина (n) показателя преломления равна для воды 1,33, для кедрового масла 1,515, для монобромнафталина 1,6.

Техника микроскопирования

Микроскоп при помощи кабеля питания подключают к электрической сети. С помощью револьвера устанавливают в ход лучей объектив с увеличением ×10. Легкий упор и звук щелчка пружины револьвера свидетельствуют о том, что объектив установлен по оптической оси. Ручкой грубой фокусировки опускают объектив на расстояние 0,5 – 1,0 см от предметного столика.

Правила работы с сухими объективами.

Приготовленный препарат помещают на предметный столик и закрепляют зажимом. С помощью сухого объектива с увеличением ×10 просматривают несколько полей зрения. Передвигают предметный столик боковыми винтами. Нужный для исследования участок препарата устанавливают в центре поля зрения. Поднимают тубус и вращением револьвера переводят объектив с увеличением ×40, наблюдая сбоку, макрометрическим винтом снова опускают тубус с объективом почти до соприкосновения с препаратом. Смотрят в окуляр, очень медленно поднимают тубус до появления контуров изображения. Точную фокусировку производят с помощью микрометрического винта, вращая его в ту или другую сторону, но не более чем на один полный оборот. Если при вращении микрометрического винта чувствуется сопротивление, значит, ход его пройден до конца. В этом случае поворачивают винт на один-два полных оборота в обратную сторону, снова находят изображение при помощи макрометрического винта и переходят к работе с микрометрическим винтом.

Полезно приучить себя при микроскопировании держать оба глаза открытыми и пользоваться ими попеременно, так как при этом меньше утомляется зрение.

При смене объективов не следует забывать, что разрешающая способность микроскопа зависит от соотношения апертуры объектива и конденсора. Числовая апертура объектива с увеличением ×40 составляет 0,65, неиммергированного конденсора – 0,95. Привести их в соответствие практически можно следующим приемом: сфокусировав препарат с объективом, следует вынуть окуляр и, глядя в тубус, прикрывать ирисовую диафрагму конденсора до тех пор, пока ее края не станут видны у границы равномерно освещенной задней линзы объектива. В этот момент числовые апертуры конденсора и объектива будут примерно равны.

Правила работы с иммерсионным объективом.

На препарат (лучше фиксированный и окрашенный) наносят небольшую каплю иммерсионного масла. Поворачивают револьвер и устанавливают по центральной оптической оси иммерсионный объектив с увеличением 100×. Конденсор поднимают вверх до упора. Ирисовую диафрагму конденсора открывают полностью. Глядя сбоку, макрометрическим винтом опускают тубус до погружения объектива в масло, почти до соприкосновения линзы с предметным стеклом препарата. Это нужно проводить очень осторожно, чтобы фронтальная линза не сместилась и не получила повреждения. Смотрят в окуляр, очень медленно вращают макрометрический винт на себя и, не отрывая объектив от масла, приподнимают тубус до появления контуров объекта. При этом следует помнить, что свободное рабочее расстояние в иммерсионном объективе равно 0,1 – 0,15 мм. Затем точную фокусировку производят макрометрическим винтом. Рассматривают в препарате несколько полей зрения, передвигая столик боковыми винтами. По окончании работы с иммерсионным объективом поднимают тубус, снимают препарат и осторожно протирают фронтальную линзу объектива сначала сухой мягкой хлопчатобумажной салфеткой, затем той же салфеткой, но слегка смоченной чистым бензином. Оставлять масло на поверхности линзы нельзя, так как оно способствует оседанию пыли и может привести со временем к повреждению оптики микроскопа. Препарат освобождают от масла сначала кусочком фильтровальной бумаги, затем обрабатывают стекло бензином или ксилолом.

к. т. н. Егорова О.В.,
эксперт Госстандарта РФ по оптическим приборам

Микроскоп является одним из основных приборов при проведении цитологических исследований. Качество его работы, как сложной оптической системы, определяется технологическими особенностями прибора и его элементов. Качество же изображения в первую очередь определяется природой построения изображения препарата световым потоком, прошедшим через него. По теории образования изображения в микроскопе, созданной на предприятии Карла Цейсса математиком и физиком Эрнстом Аббе (1840-1905) [показать] в 1872 году, изображение является совокупностью дифракционного и интерференционного свойства света.

2005 год объявлен годом Аббе за вклад в развитие оптического приборостроения и за организацию Фонда "Carl ZEISS", объединившего приборостроительный завод "Zeiss" и завод по производству стекла "Schott".

Оба эти свойства влияют на качество изображения и на точность воспроизведения объекта в изображении, а Август Келер (1866-1948) в 1883 году опубликовал предписания по правильному освещению микроскопических препаратов.

С другой стороны, качество изображения оптической системы зависит и от ее технологического совершенства (наличия остаточных аберраций - искажений, дефектов стекла), сборки и центрировки.

Важной количественной характеристикой качества изображения служит разрешающая способность. Остаточные искажения вызывают перераспределение световой энергии в дифракционной картине, а внутренние дефекты объектива (и всей оптической системы микроскопа) приводят к образованию вредного рассеянного света и геометрического искажения дифракционной картины, накладывающихся на оптическое изображение, что снижает разрешающую способность и контраст изображения.

Разрешающей способностью оптической системы называется ее свойство изображать раздельно две точки или две линии, расположенные в пространстве предметов. Мерой разрешающей способности служит наименьшее линейное или угловое расстояние между двумя точками (линиями), изображения которых раздельно строятся оптической системой.

Оптическую систему принято считать совершенной, если разрешающая способность ограничена только дифракцией света на краях оправы объектива или апертурной диафрагмы конденсора. Дифракция света, обусловленная волновой природой света, нарушает прямолинейное распространение света; светящаяся точка изображается в виде круглого пятна, называемого кружком Эри, окруженного темными и светлыми кольцами убывающей яркости. Около 84% световой энергии сконцентрировано в центральном пятне, 7% - внутри первого светлого пятна и 9% - в остальных кольцах. Радиус р (рис. 1) первого темного кольца в плоскости изображения определяется выражением р = 1,22λ f , / D (1), где λ - длина волны света; f , - фокусное расстояние оптической системы; D - диаметр действующего отверстия системы (апертуры).

Величина р равна расстоянию между центрами изображения двух точек А и В; р можно определить по формуле р = 0,61λ / sin σ , , (2), где σ , - апертурный угол в пространстве изображений.

При λ = 0,560 мкм = 560 нм р = 0,34 / σ , где р измеряется в микрометрах.

Изображения двух светящихся точек, построенные оптической системой, представляют собой два пятна с нерезкими краями. По мере сближения точек пятна соприкасаются, потом перекрываются и затем сливаются (рис. 1).

Глаз может видеть две точки в плоскости изображения раздельно при некотором минимальном расстоянии р между ними и необходимой разности освещенностей в точке минимума а и максимумов А или В. Контрастная чувствительность для среднего глаза равна 5%. Отношение освещенности в точке а к освещенности в точке А или В достигает 85%.

Разрешающую способность оптических систем определяют с помощью штриховых или радиальных мир, выполненных на стеклянных пластинках (рис. 2). На темном фоне фотолитографическим способом нанесены светлые штрихи или сектора. Выпускают стандартные штриховые миры шести номеров (для оценки разрешающей способности объективов фотоаппаратов и других оптических приборов и узлов) и миру № 0 для автоколлимационной оценки разрешающей способности объективов микроскопа. Каждая мира состоит из 25 элементов, оцифрованных по краям и имеющих по четыре группы штрихов с шириной штриха, меняющейся от одного элемента к другому. Под шириной штриха понимают осевое расстояние между двумя соседними темными или светлыми полосами, т. е. суммарная ширина темной и светлой полос равна ширине одного штриха. Все стандартные миры имеют абсолютный контраст К = 1.

Разрешающую способность объектива микроскопа определяют в линейной мере. Для несамосветящихся объектов предел разрешения d = λ / A (3), где А - числовая апертура, равная произведению показателя преломления п среды между объективом и предметом и sin σ .

При наблюдении периодической структуры наименьшее расстояние d , согласно теории Аббе, зависит от апертуры объектива и апертуры конденсора: d = λ / (A + A k) , (4), где A k - числовая апертура конденсора.

Если апертура конденсора равна апертуре объектива, то разрешающая способность микроскопа для самосветящихся объектов определяется формулой d = λ / (2A) (5)

Таблица 1. Расчетные значения разрешающей способности объективов
А об λ = 400 нм λ = 550 нм λ = 700 нм
Р 1 Р 2 Р 1 Р 2 Р 1 Р 2
0,025 8,0 9,76 11,0 17,08 13,42 14,0
0,075 2,67 3,25 3,67 5,69 4,47 4,67
0,10 2,0 2,44 2,75 4,27 3,36 3,5
0,12 1,67 2,03 2,29 3,56 2,8 2,92
0,20 1,0 1,22 1,3 1,67 1,75 2,13
0,25 0,8 0,98 1,10 1,71 1,34 1,4
0,30 0,67 0,81 0,92 1,42 1,12 1,17
0,40 0,5 0,61 0,66 1,07 0,84 0,87
0,45 0,44 0,54 0,62 0,95 0,74 0,78
0,50 0,4 0,49 0,55 0,85 0,67 0,7
0,65 0,31 0,37 0,42 0,66 0,52 0,54
0,75 0,27 0,32 0,36 0,57 0,45 0,47
0,80 0,25 0,305 0,34 0,53 0,42 0,44
0,85 0,23 0,29 0,32 0,5 0,39 0,41
0,90 0,22 0,27 0,31 0,47 0,37 0,39
0,95 0,21 0,26 0,29 0,45 0,35 0,37
1,0 0,126 0,126 0,174 0,221 0,174 0,221
1,20 0,105 0,105 0,145 0,184 0,145 0,184
1,25 0,101 0,101 0,139 0,177 0,139 0,177
1,30 0,097 0,097 0,134 0,17 0,134 0,17
1,40 0,09 0,09 0,124 0,158 0,124 0,158
1,45 0,087 0,087 0,120 0,152 0,120 0,152
Р 1 - расчет по формуле (5) Р 2 - расчет по формуле (2)

Следует отметить, что чем более тонкие исследования проводятся, тем более сопоставимым должно быть расчетное качество объектива и конденсора (осветительной системы). Например, новые исследовательские и универсальные микроскопы "Axio Imager" имеют принципиальный расчет IC2S оптики, уравнивающий качество объектива и осветительной системы.

Из приведенных формул следует, что чем короче длина волны света и больше апертура объектива, тем выше разрешающая способность объектива микроскопа.

Для увеличения разрешающей способности микроскопа можно использовать иммерсионные жидкости, которые заполняют пространство между рассматриваемым предметом и объективом микроскопа. Благодаря этому числовая апертура объектива микроскопа может быть доведена до 1,45, а предельное разрешаемое расстояние при λ = 0,56 мкм - до d = 0,17 мкм.

На повышение разрешающей способности влияет соотношение светового потока, прошедшего через препарат (апертура конденсора) и воспринятого объективом (апертура объектива). Если препарат контрастный (после проведенной обработки и окраски соответствующим способом), то по принципу Келера при настройке освещения допустимо раскрытие апертурной диафрагмы конденсора до величины числовой апертуры объектива или с помощью ирисовой диафрагмы размер апертурной диафрагмы конденсора может быть уменьшен на 1/3.

Таким образом, величина разрешающей способности может быть рассчитана как по формуле (5), так и по формуле (2) соответственно. Поэтому при работе с объективом А = 1,25 можно применять конденсор как с числовой апертурой А = 0,9 (сухой, разрешающая способность рассчитывается по формуле 2), так и А = 1,25 (иммерсионный, разрешающая способность рассчитывается по формуле 5), при этом не забываем, что для получения А = 1,25 на конденсор необходимо "капать" иммерсионное масло.

В табл. 1 представлены расчетные значения разрешающей способности объективов, традиционно применяемых для медико-биологических исследований.

На рис. 3 представлены примеры изображений при правильно настроенном микроскопе (а) и при неправильной настройке осветительной системы микроскопа (б, в). Как видно, неправильная настройка влияет на разрешающую способность микроскопа, а также на точность передачи элементов препарата в его изображении.

Как уже было сказано, разрешение может быть повышено за счет применения цветных светофильтров. Традиционными являются синий, зеленый, желтый и красный. Однако если синий и зеленый действительно влияют на повышение разрешающей способности, то желтый и красный работают на повышение контраста, т. е. усиливают разницу между средой и препаратом.

Таким образом, на разрешающую способность в микроскопе влияют:

  • параметры объектива (числовая апертура объектива);
  • возможность настройки освещения по Келеру (регулируемые полевая и апертурная диафрагмы, фокусировочное перемещение конденсора и возможность его центрировки, возможность центрировки нити лампы, если лампа не является самоцентрируемой);
  • качество оптики микроскопа (расчетное и технологическое);
  • применение светофильтров в коротковолновой области спектра (от УФ до зеленой).

Источник : И.П. Шабалова, Т.В.Джангирова, Н.Н.Волченко, К.К.Пугачев. Цитологический атлас: Диагностика заболеваний молочной железы.- М.-Тверь: ООО "Издательство "Триада", 2005

Микроскоп, как оптический прибор. Разрешающая способность микроскопа.

Микроскоп (от микро... и греческого skopeo — смотрю) - это оптический прибор для получения сильно увеличенного изображения изучаемого очень маленького объекта, невидимого невооружённым глазом. При помощи микроскопа можно рассмотреть мелкие детали строения объекта, размеры которых лежат за пределами разрешающей способности глаза.

Человеческий глаз представляет собой естественную оптическую систему, которая характеризуется определённым разрешением. Разрешением оптической системы называется наименьшее расстояние между элементами наблюдаемого объекта, при котором эти элементы ещё могут быть отличены один от другого (под элементами объекта мы понимаем точки или линии).

Если объект удален на так называемое расстояние наилучшего видения, которое составляет250 мм, то для нормального человеческого глаза минимальное разрешение составляет примерно0,1 мм, а у многих людей — около0,2 мм. Примерно это соответствует толщине человеческого волоска. Размеры объектов, таких как растительные и животные клетки, мелкие кристаллы, детали микроструктуры металлов и сплавов и т.п., значительно меньше0,1 мм. Такие объекты принято называть микрообъекты. Для наблюдения и изучения подобных объектов и предназначены микроскопы различных типов. С помощью микроскопа определяют форму, размеры, строение и многие другие характеристики микрообъектов. Оптический микроскоп даёт возможность различать структуры с расстоянием между элементами до 0,20 мкм, т.е. разрешающая способность такого микроскопа составляет около 0,20 мкм или 200 нм.

Когда говорят о разрешающей способности микроскопа, подразумевают, также как и под разрешающей способностью человеческого глаза, раздельное изображение двух близко расположенных объектов. Однако, нужно понимать, что разрешающая способность и увеличение - это не одно и тоже. Например, если при помощи систем визуализации получить со светового микроскопа фотографии двух линий, расположенных на расстоянии менее 0,20 мкм (т.е. менее разрешающей способности микроскопа), то, как бы мы не увеличивали изображение, линии все равно будут сливаться в одну. Т.е. мы сможем получить большое увеличение, но не улучшим его разрешение. Общее увеличение микроскопа равно произведению линейного увеличения объектива на угловое увеличение окуляра. Значения увеличений гравируются на оправах объективов и окуляров. Рассмотрим микроскоп плоского поля (не стереоскопический). Это биологические микроскопы, металлографические, поляризационные. Обычно объективы такого микроскопа имеют увеличения от 4 до 100 крат, а окуляры — от 5 до 16. Поэтому общее увеличение оптического микроскопа лежит в пределах от 20 до 1600 крат. Разумеется, технически возможно разработать и применить в микроскопе объективы и окуляры, которые дадут общее увеличение, значительно превышающее 1600 крат (например, существуют окуляры с увеличением 20 крат, которые в паре с объективом 100 крат дадут увеличение 2000 крат). Однако, обычно это нецелесообразно. Большие увеличения не являются самоцелью оптической микроскопии. Назначение микроскопа состоит в том, чтобы обеспечить различение как можно более мелких элементов структуры препарата, т.е. в максимальном использовании разрешающей способности микроскопа. А она имеет предел, обусловленный волновыми свойствами света. Таким образом, различают полезное и неполезное увеличение микроскопа. Полезное увеличение - это когда можно выявить новые детали строения объекта, а неполезное - это увеличение, при котором, увеличивая объект в сотни и более раз, нельзя обнаружить новых деталей строения объекта.

Еще раз остановимся на понятии разрешающей способности. Разрешающая способность оптических приборов (так же ее называют разрешающая сила) характеризует способность этих приборов давать раздельные изображения двух близких друг к другу точек объекта. Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Существование предела разрешающей способности влияет на выбор увеличений, которые мы получаем с помощью микроскопа. Увеличения до 1250 крат называют полезными, т. к. при них мы различаем все элементы структуры объекта. При этом возможности микроскопа по разрешающей способности исчерпываются. Это увеличение получаем при использовании объектива 100 крат, работающего с масляной иммерсией, и окуляра 12,5 крат (полезное увеличение окуляров лежит от 7,5 до 12,5 крат). При увеличениях свыше 1250 крат не выявляются никакие новые детали структуры препарата. Однако иногда такие увеличения используют — в микрофотографии, при проектировании изображений на экран и в некоторых других случаях.

Когда необходимо существенно более высокое полезное увеличение, используют электронный микроскоп. Этот микроскоп обладает существенно более высокой разрешающей способностью, нежели оптический микроскоп. Электронный микроскоп - это прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30—100 кэв и более) в условиях глубокого вакуума.

Классификация световых микроскопов и области их применения

По строению оптической схемы различают прямые (объективы, насадка и окуляры расположены над объектом) и инвертированные (объект находится над оптической системой, формирующей изображение) микроскопы. Также различают микроскопы плоского поля (дающие двухмерное изображение) и стереоскопические микроскопы (объемное - трехмерное изображение).

По способам освещения разделяют микроскопы проходящего света (изображение формируется светом, проходящим через объект) и отраженного света (изображение формируется светом, отраженным от поверхности объекта).

Микроскопы можно разделить также по методам исследования:

Светлого поля (на светлом фоне выделяется более темный объект);

Темного поля (на темном фоне выделяется светлый объект или его краевые структуры);

Фазового контраста (на светло-сером фоне наблюдается темно-серый рельефный объект);

Люминесценции (на темном фоне выделяются светящиеся объекты или части объекта);

Поляризованного света (наблюдается ярко окрашенное в различные цвета или оттенки изображение объекта).

Можно выделить следующиеобласти применения световых микроскопов:

Биологические микроскопыдля лабораторных биологических и медицинских исследований прозрачных объектов. Доступны режимы светлого и темного поля, фазовый контраст, поляризованный и люминесцентный свет.

Стереоскопические микроскопыв лабораториях и на различных производствах для получения увеличенных изображений объектов во время проведения рабочих операций. Возможна работа в отраженном и проходящем свете. Доступны режимы светлого и темного поля.

Металлографические микроскопыв научных и промышленных лабораториях для исследования непрозрачных объектов. Работа в отраженном свете. Доступны режимы светлого и темного поля, фазовый контраст, поляризованный свет.

Поляризационные микроскопыв научных и исследовательских лабораториях для специализированных исследований в поляризованном свете. Возможна работа в отраженном и проходящем свете. Доступны режимы светлого и темного поля.

Объективы и окуляры для микроскопов

Объектив микроскопа - микрообъектив представляет собой сложную оптическую систему, образующую увеличенное изображение объекта, и является основной и наиболее ответственной частью микроскопа. Микрообъектив создает действительное перевернутое изображение, которое рассматривается через окуляр.

Объективы различаются по оптическим характеристикам и конструкции:

По степени исправления хроматической аберрации: ахроматы, апохроматы и др.

С исправленной кривизной изображения: - планахроматы, планапохроматы.

По длине тубуса микроскопа -160 ммдля проходящего света,190 ммдля отраженного света, бесконечность - для проходящего и отраженного света;

По свойствам иммерсии: сухие системы (без иммерсии) и иммерсионные системы.

Объективы апохроматы отличаются от ахроматов степенью исправления хроматической аберрации. Благодаря более совершенному устранению дефектов изображения, связанных с хроматической аберрацией, качество изображения, получаемого при наблюдении цветных объектов (окрашенные срезы, микроорганизмы и т.п.), особенно при больших увеличениях, значительно выше при использовании апохроматов. Апохроматы, а также ахроматы большого увеличения применяются совместно с компенсационными окулярами. На оправе апохроматов обычно выгравировано АПО (APO). У ахроматов и апохроматов, особенно большого увеличения, остается неисправленной кривизна поля изображения.